The P3H1 complex has disulfide isomerase activity in vitro 1 An Additional Function of the Rough Endoplasmic Reticulum Protein complex Prolyl 3- Hydroxylase 1∙Cartilage associated protein∙Cyclophilin B: The CXXXC motif Reveals Disulfide Isomerase Activity in vitro
نویسندگان
چکیده
Collagen biosynthesis occurs in the rough Endoplasmic Reticulum (rER) and many molecular chaperones and folding enzymes are involved in this process. The folding mechanism of type I procollagen has been well characterized and protein disulfide isomerase (PDI) has been suggested as a key player in the formation of the correct disulfide bonds in the non-collagenous carboxy-terminal and aminoterminal propeptides. Prolyl 3-hydroxylase 1 (P3H1) forms a hetero-trimeric complex with cartilage associated protein (CRTAP) and Cyclophilin B (CypB). This complex is a multi functional complex acting as a prolyl 3hydroxylase, a peptidyl prolyl cis-trans isomerase and a molecular chaperone. Two major domains are predicted from the primary sequence of P3H1: An amino-terminal domain and a carboxy-terminal domain corresponding to the 2-oxoglutarateand iron-dependant dioxygenase domains similar to the α-subunit of prolyl 4-hydroxylase and lysyl hydroxylases. The amino-terminal domain contains four CXXXC sequence repeats. The primary sequence of CRTAP is homologous to the amino-terminal domain of P3H1 and also contains four CXXXC sequence repeats. However, the function of the CXXXC sequence repeats is not known. Several publications have reported that short peptides containing a CXC or a CXXC sequence show oxido-reductase activity similar to PDI in vitro. We hypothesize that CXXXC motifs have oxido-reductase activity similar to the CXXC motif in PDI. We have tested the enzyme activities on model substrates in vitro using a GCRALCG peptide and the P3H1 complex. Our results suggest that this complex could function as a disulfide isomerase in the rER. _______________________________________
منابع مشابه
Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes.
Recessive mutations in the cartilage-associated protein (CRTAP), leucine proline-enriched proteoglycan 1 (LEPRE1) and peptidyl prolyl cis-trans isomerase B (PPIB) genes result in phenotypes that range from lethal in the perinatal period to severe deforming osteogenesis imperfecta (OI). These genes encode CRTAP (encoded by CRTAP), prolyl 3-hydroxylase 1 (P3H1; encoded by LEPRE1) and cyclophilin ...
متن کاملCorrection: Differential Effects of Collagen Prolyl 3-Hydroxylation on Skeletal Tissues
Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity ess...
متن کاملStructural basis of cyclophilin B binding by the calnexin/calreticulin P-domain.
Little is known about how chaperones in the endoplasmic reticulum are organized into complexes to assist in the proper folding of secreted proteins. One notable exception is the complex of ERp57 and calnexin that functions as part the calnexin cycle to direct disulfide bond formation in N-glycoproteins. Here, we report three new complexes composed of the peptidyl prolyl cis-trans-isomerase cycl...
متن کاملLack of cyclophilin B in osteogenesis imperfecta with normal collagen folding.
Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive osteogenesis imperfecta with rhizomelia (short...
متن کاملEffect of PDI overexpression on recombinant protein secretion in CHO cells.
In eukaryotic cells, protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and th...
متن کامل